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Abstract
A class of bound-state problems which represents the coupling of a two-level
atom with a two-dimensional supersymmetric system involving two shape-
invariant potentials is introduced. We study two models with different coupling
Hamiltonians.

PACS numbers: 03.65.Fd, 03.65.Ge, 02.20.−a

1. Introduction

Solvable models in quantum theory are so rare that they are worth studying on their own right.
Even though they describe oversimplified limiting cases, they could represent salient features
of the physical phenomena involved and can be useful in exploring various approximations
indispensable for the treatment of more realistic cases. Supersymmetric quantum mechanics
together with the shape-invariance concept represents an elegant and powerful method to
exactly solve a set of potential systems (such as harmonic oscillator, Coulomb, Morse, Pöschl–
Teller, Húlthen, etc) [1].

Supersymmetric quantum mechanics is usually studied in the context of one-dimensional
systems [1]. The partner Hamiltonians

Ĥ− = − h̄2

2M

d2

dx2
+ V (−)(x) = h̄�Â†Â and Ĥ + = − h̄2

2M

d2

dx2
+ V (+)(x) = h̄�ÂÂ†

(1)

can be written in terms of the dimensionless operators

Â ≡ 1√
h̄�

{
W(x) +

i√
2M

p̂

}
and Â† ≡ 1√

h̄�

{
W(x) − i√

2M
p̂

}
, (2)
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where h̄� is an energy scale factor and W(x) is the superpotential which is related to the
potentials V (±)(x) via

V (±)(x) = W 2(x) ± h̄√
2M

dW(x)

dx
. (3)

A number of such pairs of Hamiltonians Ĥ± share an integrability condition called shape
invariance [2]. Although not all exactly solvable problems are shape invariant [3], shape
invariance, especially in its algebraic formulation [4–6], is a powerful technique to investigate
exactly solvable systems.

Relevant progress in the multi-dimensional generalization of the supersymmetric quantum
mechanical systems based in the Witten formulation [1] was obtained in [7–9]. In earlier
publications [10–12], we introduced a class of shape-invariant coupled-channel problems
which generalize the Jaynes–Cummings Hamiltonian [13]. In this paper we study a class
of coupled-channel problems consisting of a two-dimensional supersymmetric and shape-
invariant system, interacting with a two-level system. We consider two different models
which we call direct- and conjugate-coupled models. For each model also we consider two
possible forms of coupling: a linear and the other nonlinear in the potential ladder operators.

In section 2 we review fundamentals of the algebraic formulation to shape invariance;
in section 3 we present the Hamiltonian for the direct-coupled model involving a two-level
atom and a two-dimensional shape-invariant potential system and obtain its eigenstates and
eigenvalues; in section 4 we repeat the same for the conjugate-coupled model; in section 5 we
apply our generalized results to obtain the eigenvalues and eigenfunctions for three different
pairs of shape-invariant potentials (namely two harmonic oscillators, a harmonic oscillator
plus a Morse potential and a harmonic oscillator plus a self-similar potential). A conclusion
and brief remarks are given in section 6.

2. Algebraic formulation for shape-invariant systems

The Hamiltonian Ĥ− of equation (1) is called shape invariant if the condition

Â(a1)Â
†(a1) = Â†(a2)Â(a2) + R(a1) (4)

is satisfied [2]. The parameter a2 of the Hamiltonian is a function of its parameter a1 and the
remainder R(a1) is independent of the dynamical variables such as position and momentum.
As is written condition (4) does not require the Hamiltonian to be one dimensional, and one does
not need to choose the ansatz of equation (2). In the cases studied so far, the parameters a1 and
a2 are either related by a translation [3, 14] or a scaling [6, 15, 16]. Introducing the parameter
translation operator T̂ ≡ T̂ (a1) and the similarity transformation T̂ Ô(a1)T̂

† = Ô(a2) that
replace a1 with a2 in a given operator [4, 6] and the operators

B̂+ = Â†(a1)T̂ and B̂− = B̂†
+ = T̂ †Â(a1), (5)

the Hamiltonians of equation (1) take the forms Ĥ− = h̄�Ĥ− and Ĥ + = h̄�T̂ Ĥ+T̂
†

where Ĥ± = B̂∓B̂±, and condition (4) can be written as the commutation relation [4]

[B̂−, B̂+] = T̂ †R(a1)T̂ ≡ R(a0), where we used the identity R(an) = T̂ R(an−1)T̂
†
, valid for

any n ∈ Z. This commutation relation suggests that B̂− and B̂+ are the appropriate creation
and annihilation operators for the spectra of the shape-invariant potentials provided that their
non-commutativity with R(a1) is taken into account. The additional relations

R(an)B̂+ = B̂+R(an−1) and R(an)B̂− = B̂−R(an+1) (6)
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readily follow from these results. Since the ground state of the Hamiltonian Ĥ− satisfies the
condition Â|0〉 = 0 = B̂−|0〉, using the relations above it is possible to obtain its normalized
nth excited state

Ĥ−|n〉 = en|n〉 and Ĥ+|n〉 = {en + R(a0)}|n〉 (7)

from the ground state |0〉 using the raising operator K̂+ and the relation [6]

|n〉 = K̂n
+ |0〉, where K̂+ = 1√

Ĥ−
B̂+. (8)

In this case the associated eigenvalues are given by e0 = 0 and

en =
n∑

k=1

R(ak), for n � 1. (9)

The action of the B̂± operators on the state given in equation (8) is

B̂+|n〉 = √
en+1|n + 1〉 and B̂−|n〉 =

√
en−1 + R(a0)|n − 1〉 (10)

and thus [10],

T̂ B̂−|n + 1〉 = √
en+1T̂ |n〉. (11)

3. Direct-coupled system

We consider in this study three interacting systems consisting of a single two-level atom
or molecule simultaneously coupled with two shape-invariant potential systems V (±)

x (x) and
V (±)

y (y) which are associated with the operators Âx and Ây , respectively. The non-interacting
part of our Hamiltonian has a supersymmetric form while its interacting part can assume two
possible forms. The first one, called the direct-coupled system, contains the interaction in
the forms ÂxÂy and Â

†
xÂ

†
y . The second one, called the conjugate-coupled system and to be

studied in the following section, contains the interaction in the forms ÂxÂ
†
y and Â

†
xÂy . For

each model we also consider two possible forms of interaction which correspond to the shape-
invariant generalization of the usual and intensity-dependent interaction forms used in optics
[17]. The usual interaction Hamiltonian presents a trilinear expression in terms of the atom
and the coupling potential operators while for the intensity-dependent case that expression is
nonlinear. As shown in [12] for the case of a two-level system coupled to a shape-invariant
potential, because of the commensurability of the Rabi frequencies, the intensity-dependent
interaction displays periodic revivals in the temporal behaviour of the quantum dynamical
variables of the system. Although this also happens with the ordinary interaction models,
periodic revivals are created by intensity-dependent interaction stress quantum effects [18].

3.1. Hamiltonian

In treating a two-level system with a lower state |−〉 and an upper state |+〉 we can introduce
the excitation σ̂+ ≡ |+〉〈−| and de-excitation σ̂− ≡ |−〉〈+| operators as well as the inversion
operator σ̂3 ≡ |+〉〈+| − |−〉〈−| which satisfy the commutation relations [σ̂+, σ̂−] = σ̂3 and
[σ̂3, σ̂±] = ±2σ̂±. By assuming a two-dimensional spinor representation for the eigenstates
of the atomic system

χ− ≡ 〈χ |−〉 =
[

0
1

]
and χ+ ≡ 〈χ |+〉 =

[
1
0

]
, (12)
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it is straightforward to verify that these operators will be represented by matrices

σ̂+ = χ+χ
†
− =

[
0 1
0 0

]
,

σ̂− = χ−χ †
+ =

[
0 0
1 0

]
, (13)

σ̂3 = χ+χ
†
+ − χ−χ

†
− =

[
1 0
0 −1

]
.

Thus if we define the polarization matrices σ̂1 ≡ σ̂− + σ̂+ and σ̂2 ≡ i(σ̂− − σ̂+) we obtain
the Pauli matrices σ̂i , for i = 1, 2 and 3. We introduce the direct model Hamiltonian which
describes the coupling of a two-level system with two shape-invariant potentials V (±)

x (x) and
V (±)

y (y) as

Ĥ = Ĥ 0 + Ĥ ξ , where Ĥ 0 = h̄�
{(

ÂxÂ
†
x + ÂyÂ

†
y

)
σ̂+σ̂− +

(
Â†

xÂx + Â†
yÂy

)
σ̂−σ̂+

}
,

(14)

and the operators Âx,y and Â
†
x,y separately satisfy the shape-invariance condition of

equation (4). We consider the interaction Hamiltonian in two possible forms. The forms to be
assumed for this Hamiltonian for an usual and a nonlinear interaction, specified respectively
when ξ = U and ξ = N, are given by

Ĥ ξ = h̄�σ̂3 + h̄g




ÂxÂyσ̂+ + Â
†
xÂ

†
yσ̂−, ξ = U,

ÂxÂy

√
N̂xN̂yσ̂+ +

√
N̂xN̂yÂ

†
xÂ

†
yσ̂−, ξ = N,

(15)

where g is a real coupling constant strength, � is the detuning factor and N̂x,y = Â
†
x,yÂx,y .

The interaction Hamiltonian Ĥ ξ is responsible for the process of heating and cooling of the
coupled system. It is worth noting that the two-level system is the mechanism that permits
the potentials V (±)

x (x) and V (±)
y (y) to interact. As can be easily checked if we take these

potentials to be harmonic oscillators, we obtain the usual and intensity-dependent versions of
the Jaynes–Cummings model describing a two-level atom interacting non-resonantly with a
two-mode cavity field.

The algebraic formulation presented in section 2 can be applied in the Hamiltonian
(14) by using the B̂

(x,y)
± operators defined by equations (5) with the introduction of the

parameter translation operators T̂ x ≡ T̂ x

(
a

(x)
1

)
and T̂ y ≡ T̂ y

(
a

(y)

1

)
for each shape-invariant

potential. Taking into account that the commutation relations
[
B̂

(α)
∓ , B̂

(β)
±

] = ±Rα

(
a

(α)
0

)
δαβ

and
[
B̂

(α)
± , B̂

(β)
±

] = 0 are satisfied, where Rx

(
a(x)

n

)
and Ry

(
a

(y)
n

)
are the remainders related to

the potentials V (±)
x (x) and V (±)

y (y), respectively, the final result can be written as Ĥ = T̂±ĥT̂ †
±

if we define the parameter translation inclusive operator T̂± = T̂ x T̂ y σ̂+σ̂− ± σ̂−σ̂+ and
decompose the Hamiltonian ĥ as ĥ = ĥ0 + ĥξ where

ĥ0 = h̄�
{(
Ĥ(x)

+ + Ĥ(y)
+

)
σ̂+σ̂− + (Ĥ(x)

− + Ĥ(y)
− )σ̂−σ̂+

}
, (16)

and the Hamiltonian ĥξ for the two kinds of interaction is given by

ĥξ = h̄�σ̂3 ± h̄g




(
B̂

(x)
− B̂

(y)
− σ̂+ + B̂

(x)
+ B̂

(y)
+ σ̂−

)
, ξ = U,(

B̂
(x)
− B̂

(y)
−

√
Ĥ(x)

− Ĥ(y)
− σ̂+ +

√
Ĥ(x)

− Ĥ(y)
− B̂

(x)
+ B̂

(y)
+ σ̂−

)
, ξ = N.

(17)

Here we used the fact that N̂x,y = B̂
(x,y)
+ B̂

(x,y)
− = Ĥ(x,y)

− and definition (14) together with the
unitarity property T̂

†
x,y T̂ x,y = T̂ x,y T̂

†
x,y = 1̂. Note the freedom of sign choice in T̂± permitted

by the form of Ĥ 0.
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3.2. Model superalgebra

Defining the supercharge operators related to each shape-invariant potential Q̂α = B̂
(α)
− σ̂+ and

their Hermitian adjoint operators Q̂†
α = B̂

(α)
+ σ̂−, where α = x or y, it is possible to rewrite

the Hamiltonian ĥ0 in (16) as

ĥ0 = h̄�
({
Q̂x, Q̂†

x

}
+

{
Q̂y, Q̂†

y

})
, (18)

and we can verify the commutation and anti-commutation relations

[Q̂α, ĥ0] = [
Q̂†

α, ĥ0
] = 0 and {Q̂α, Q̂α} = {

Q̂†
α, Q̂†

α

} = 0, α = x or y.

(19)

The set of relations (18) and (19) characterize the supersymmetry of the Hamiltonian ĥ0,
with the operators Q̂α and Q̂†

α as its generators. The commutation relations of (19) state
the invariance of the Hamiltonian under this symmetry while the anti-commutation relations
express the fermionic character of the supercharge operators. Equation (18) closes the graded
Lie algebra with the anti-commutators of Q̂α with Q̂†

α . The supercharges Q̂α are interpreted
as the operators which change bosonic degrees of freedom into fermionic ones and vice versa.

On the other hand, if we introduce the hybrid supercharge operator Q̂xy = B̂
(x)
− B̂

(y)
− σ̂+ and

its adjoint operator Q̂†
xy = B̂

(x)
+ B̂

(y)
+ σ̂−, it is possible to rewrite the interaction Hamiltonian

(17) for the ξ = U case as

ĥU = h̄
{
�σ̂3 ± g

(
Q̂xy + Q̂†

xy

)}
. (20)

Besides that using the definition of Q̂xy , it is easy to verify the additional commutation and
anti-commutation relations

[Q̂xy, ĥ0] = [
Q̂†

xy, ĥ0
] = 0 and {Q̂xy, Q̂xy} = {

Q̂†
xy, Q̂†

xy

} = 0. (21)

The commutators imply that [ĥ0, ĥU] = 0 while the anti-commutators express the fermionic
character of the hybrid supercharge operators.

In the ξ = N interaction case, the hybrid supercharge operator and its adjoint operator
must be redefined as Q̂xy = B̂

(x)
− B̂

(y)
−

√
Ĥ(x)

− Ĥ(y)
− σ̂+ and Q̂†

xy =
√
Ĥ(x)

− Ĥ(y)
− B̂

(x)
+ B̂

(y)
+ σ̂−, and

expressions (20) and (21) are still valid.
The hybrid supercharge operator Q̂xy and its adjoint operator Q̂†

xy are responsible,
respectively, for the heating and cooling process of the coupled system. In the heating
process, schematically illustrated in figure 1, the two-level system is excited while the two
shape-invariant potentials exhibit a de-excitation process. The inverse cooling process of the
coupled system is also illustrated in that figure.

3.3. Eigenstates and eigenvalues

Since Ĥ 0 and Ĥ ξ commute, it is possible to find a common set of eigenstates for them. To
obtain the eigenstates of Ĥ 0|	〉 = E(0)|	〉, we first introduce the dressed states

|	(±)〉 = T̂±
{
C(±)

nxny
|nx〉x |ny〉y |+〉 + C(±)

mxmy
|mx〉x |my〉y |−〉}

= T̂ x T̂ yC
(±)
nxny

|nx〉x |ny〉y |+〉 ± C(±)
mxmy

|mx〉x |my〉y |−〉, (22)

where C(±)
µν ≡ C(±)

µν

[
a

(x)
1 , a

(x)
2 , . . . ; a

(y)

1 , a
(y)

2 , . . .
]

are auxiliary normalization coefficients
which depend on the potentials parameters a(α)

n . The states |ν〉α are the eigenstates (8) of the
Hamiltonians Ĥ(α)

− with eigenvalues e
(α)
0 = 0 and

e(α)
ν =

ν∑
j=1

Rα

(
a

(α)
j

)
, for ν � 1 and α = x or y. (23)
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Figure 1. Schematic representation of the heating and cooling process produced with the action
of the hybrid supercharge operator Q̂xy in the case of the direct-coupled model.

Therefore using equations (7), (16) and (22) in the eigenvalue equation and taking into account
the commutation between the C-coefficients and the Hamiltonians Ĥ(α)

± , the operators action
(8), and the unitarity of the operators T̂ α we obtain the system of equations




{
h̄�T̂ xT̂ y

[
e(x)
nx

+ Rx

(
a

(x)
0

)
+ e

(y)
ny

+ Ry

(
a

(y)

0

)]
T̂

†
yT̂

†
x

}
T̂ x T̂ yC

(±)
nxny

|nx〉x |ny〉y
= E(0)T̂ x T̂ yC

(±)
nxny

|nx〉x |ny〉y
h̄�

[
e(x)
mx

+ e
(y)
my

]
C(±)

mxmy
|mx〉x |my〉y = E(0)C(±)

mxmy
|mx〉x |my〉y.

(24)

Comparing the coupling potential eigenstates |ν〉α in the two equations of (24), we conclude
that we must have mx = nx + 1 and my = ny + 1 and thus we find that

∣∣	(±)
nxny

〉 = T̂ x T̂ yC
(±)
nxny

|nx〉x |ny〉y |+〉 ± C
(±)
nx+1,ny+1|nx + 1〉x |ny + 1〉y |−〉 (25)

and E(0)
α ≡ E(0)

nxny
= h̄�

(
e
(x)
nx+1 + e

(y)

ny+1

)
. In a two-dimensional spinor representation, the

eigenstates (25) of the coupled system can be written in terms of the coupling potential
eigenfunctions ψ(x)

µ (x) and ψ
(y)
ν (y) as

	(±)
nxny

(x, y) = 〈
x, y

∣∣	(±)
nxny

〉 =
[
T̂ x T̂ yC

(±)
nxny

ψnxny
(x, y)

± C
(±)
nx+1,ny+1ψnx+1,ny+1(x, y)

]
, (26)

where ψµν(x, y) ≡ 〈x|µ〉x〈y|ν〉y = ψ(x)
µ (x)ψ

(y)
ν (y). Note that the orthonormality of the

eigenstates
∣∣	(±)

nxny

〉
imply the following relations among the C-coefficients:

[
C(±)

nxny

]2
+

[
C

(±)
nx+1,ny+1

]2 = 1 and C(±)
nxny

C(∓)
nxny

− C
(±)
nx+1,ny+1C

(∓)
nx+1,ny+1 = 0. (27)
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To determine the eigenvalues of Ĥ ξ , we need to calculate Ĥ ξ

∣∣	(±)
nxny

〉 = E (±)
ξnxny

∣∣	(±)
nxny

〉
.

Using equations (14), (17) and (25) in this eigenvalue equation for the ξ = U interaction case,
we obtain the system of equations


h̄�T̂ xT̂ yC
(±)
nxny

|nx〉x |ny〉y ± h̄gT̂ xT̂ yB̂
(x)
− B̂

(y)
− C

(±)
nx+1,ny+1|nx + 1〉x |ny + 1〉y

= E (±)
Unxny

T̂ x T̂ yC
(±)
nxny

|nx〉x |ny〉y
h̄gB̂

(x)
+ B̂

(y)
+ C(±)

nxny
|nx〉x |ny〉y ∓ h̄�C

(±)
nx+1,ny+1|nx + 1〉x |ny + 1〉y

= ±E (±)
Unxny

C
(±)
nx+1,ny+1|nx + 1〉x |ny + 1〉y

(28)

from which, using relations (10) and (11), we find the eigenvalue

E (±)
Unxny

= ±h̄

√
g2e

(x)
nx+1e

(y)

ny+1 + �2 (29)

and the additional relation

C
(±)
nx+1,ny+1 = {√

1 + υ2
nxny

∓ υnxny

}(
T̂ x T̂ yC

(±)
nxny

T̂ †
yT̂

†
x

)
, where υnxny

= �

g

√
e
(x)
nx+1e

(y)

ny+1

.

(30)

On the other hand, using equations (14), (17) and (25) in the eigenvalue equation for the
ξ = N interaction case and following the same steps used before we obtain the system of
equations


h̄�T̂ xT̂ yC
(±)
nxny

|nx〉x |ny〉y ± h̄gT̂ xT̂ yB̂
(x)
− B̂

(y)
−

√
N̂xN̂yC

(±)
nx+1,ny+1|nx + 1〉x |ny + 1〉y

= E (±)
Nnxny

T̂ x T̂ yC
(±)
nxny

|nx〉x |ny〉y
h̄g

√
N̂xN̂yB̂

(x)
+ B̂

(y)
+ C(±)

nxny
|nx〉x |ny〉y ∓ h̄�C

(±)
nx+1,ny+1|nx + 1〉x |ny + 1〉y

= ±E (±)
Nnxny

C
(±)
nx+1,ny+1|nx + 1〉x |ny + 1〉y

(31)

which, in this case, gives the eigenvalue

E (±)
Nnxny

= ±h̄

√{
ge

(x)
nx+1e

(y)

ny+1

}2
+ �2 (32)

and an additional relation among the C-coefficients with the same form (30), but with the
factor υnxny

now given by υnxny
= �

/(
ge

(x)
nx+1e

(y)

ny+1

)
.

To conclude this section, we observe that in both interaction cases the energy eigenvalues
of the coupled system E

(±)
ξnxny

= E(0)
nxny

+ E (±)
ξnxny

can be written in a dimensionless form as

E
(±)
ξnxny

/
h̄� =

{
e
(x)
nx+1 + e

(y)

ny+1

}
± ε




√
e
(x)
nx+1e

(y)

ny+1 + δ2 if ξ = U,√{
e
(x)
nx+1e

(y)

ny+1

}2
+ δ2 if ξ = N,

(33)

where ε = g/� and δ = �/g. On the other hand, using relation (8), it is possible to obtain
the excited states of the coupled system

∣∣	(±)
nxny

〉
from the two-dimensional spinor state

∣∣	(±)
00

〉 =
[
T̂ x T̂ yC

(±)
00 |0〉x |0〉y

± C
(±)
11 |1〉x |1〉y

]
(34)

by using the expression
∣∣	(±)

nxny

〉 = K̂
(±)

nxny

∣∣	(±)
00

〉
, where the raising operator matrix is given by

K̂(±)
nxny

= T̂±Ĉ(±)
nxny

{
K̂(x)

+

}nx
{
K̂

(y)
+

}ny
{
Ĉ(±)

00

}−1
T̂†

± with{
T̂± = T̂ x T̂ yσ̂+σ̂− ± σ̂−σ̂+

Ĉ(±)
nxny

= C(±)
nxny

σ̂+σ̂− + C
(±)
nx+1,ny+1σ̂−σ̂+

(35)



3922 A N F Aleixo and A B Balantekin

and the single potential raising operator given by

K̂(α)
+ = 1√

Ĥ(α)
−

B̂(α)
+ , α = x or y. (36)

4. Conjugate-coupled system

4.1. Hamiltonian

For the second case we introduce a coupled system the dynamics of which is governed by the
Hamiltonian

Ĥ = Ĥ 0 + Ĥ ξ , where Ĥ 0 = h̄�
{(

ÂxÂ
†
x + Â†

yÂy

)
σ̂+σ̂− +

(
Â†

xÂx + ÂyÂ
†
y

)
σ̂−σ̂+

}
,

(37)

and the Hamiltonians for the two kinds of interactions are given by

Ĥ ξ = h̄�σ̂3 + h̄g

{
ÂxÂ

†
yσ̂+ + ÂyÂ

†
xσ̂−, ξ = U,

Âx

√
N̂xN̂yÂ

†
y σ̂+ + Ây

√
N̂yN̂xÂ

†
xσ−, ξ = N.

(38)

The g and � constants have the same meaning as before. In this case if we take harmonic
oscillator potentials, we obtain the usual and intensity-dependent versions of the Jaynes–
Cummings [13, 19] and of the anti-Jaynes–Cummings models [20] describing a two-level
atom interacting non-resonantly with a field Âx and with a field Ây , respectively.

Applying the algebraic formulation presented in section 2, we can write Ĥ = T̂±ĥT̂ †
± if we

define the parameter translation inclusive operator T̂± = T̂ x σ̂+σ̂− ± T̂ y σ̂−σ̂+ and decompose
the Hamiltonian ĥ as ĥ = ĥ0 + ĥξ , where

ĥ0 = h̄�
{(
Ĥ(x)

+ + Ĥ(y)
−

)
σ̂+σ̂− +

(
Ĥ(x)

− + Ĥ(y)
+

)
σ̂−σ̂+

}
, (39)

and the Hamiltonian ĥξ for the two kinds of interaction is given by

ĥξ = h̄�σ̂3 ± h̄g




(
B̂

(x)
− B̂

(y)
+ σ̂+ + B̂

(y)
− B̂

(x)
+ σ̂−

)
, ξ = U,(

B̂
(x)
−

√
N̂xN̂yB̂

(y)
+ σ̂+ + B̂

(y)
−

√
N̂yN̂xB̂

(x)
+ σ̂−

)
, ξ = N.

(40)

Again the form of Ĥ 0 permits a freedom of sign choice in the definition of T̂±.

4.2. Model superalgebra

In this case the supercharge operators and their adjoint operators must be defined as
Q̂x = B̂

(x)
− σ̂+, Q̂†

x = B̂
(x)
+ σ̂− and Q̂y = B̂

(y)
+ σ̂+, Q̂†

y = B̂
(y)
− σ̂− to permit us to rewrite the

Hamiltonian ĥ0 in (39) in the same form as in equation (18). With these new supercharge
definitions and the form (18) of ĥ0, it is straightforward to verify that the commutation and
anti-commutation relations (19) which characterize the supersymmetry of the Hamiltonian ĥ0

remain valid.
On the other hand we introduce the hybrid supercharge operator and its adjoint operator in

the forms Q̂xy = B̂
(x)
− B̂

(y)
+ σ̂+ and Q̂†

xy = B̂
(x)
+ B̂

(y)
− σ̂− for the ξ = N interaction case and in the

forms Q̂xy = B̂
(x)
−

√
N̂xN̂yB̂

(y)
+ σ̂+ and Q̂†

xy = B̂
(y)
−

√
N̂yN̂xB̂

(x)
+ σ̂− for the ξ = N interaction case

to permit us to rewrite the Hamiltonian ĥξ in the same form as in equation (20). Obviously
in both cases the additional commutation and anti-commutation relations (21) are still valid.
The action of the hybrid supercharge operator Q̂xy and its adjoint operator Q̂†

xy in the heating
and cooling process of the conjugate-coupled system is schematically illustrated in figure 2.
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Figure 2. Same as figure 1 for the case of the conjugate-coupled model.

4.3. Eigenstates and eigenvalues

Since [Ĥ 0, Ĥ ξ ] = 0, it is possible to find a common set of eigenstates for them. Thus,
introducing the dressed state

|	(±)〉 = T̂±
{
C(±)

nxny
|nx〉x |ny〉y |+〉 + C

(±)
kxky

|kx〉x |ky〉y |−〉}
= T̂ xC

(±)
nxny

|nx〉x |ny〉y |+〉 ± T̂ yC
(±)
kxky

|kx〉x |ky〉y |−〉 (41)

in the eigenvalue equation Ĥ 0|	〉 = E(0)|	〉 and using equations (7), (39) and (41), we obtain
the system of equations


{
h̄�T̂ x

[
e(x)
nx

+ Rx

(
a

(x)
0

)
+ e

(y)
ny

]
T̂

†
x

}
T̂ xC

(±)
nxny

|nx〉x |ny〉y = E(0)T̂ xC
(±)
nxny

|nx〉x |ny〉y{
h̄�T̂ y

[
e
(x)
kx

+ e
(y)

ky
+ Ry

(
a

(y)

0

)]
T̂

†
y

}
T̂ yC

(±)
kxky

|kx〉x |ky〉y = E(0)T̂ yC
(±)
kxky

|kx〉x |ky〉y
(42)

the solution of which implies that we have kx = nx + 1 and ky = ny − 1. Thus, after we
redefine ny → ny + 1, we find the eigenstate∣∣	(±)

nxny

〉 = T̂ xC
(±)
nx ,ny+1|nx〉x |ny + 1〉y |+〉 ± T̂ yC

(±)
nx+1,ny

|nx + 1〉x |ny〉y |−〉 (43)

and the associated eigenvalue E(0)
nxny

with the same form obtained for the first coupled system
studied.

In this case the two-dimensional spinor representation of the eigenstates (43) of the
coupled system can be written in terms of the coupling potential eigenfunctions ψ(x)

µ (x) and

ψ
(y)
ν (y) as

	(±)
nxny

(x, y) = 〈
x, y

∣∣	(±)
nxny

〉 =
[
T̂ xC

(±)
nx ,ny+1ψnx,ny+1(x, y)

± T̂ yC
(±)
nx+1,ny

ψnx+1,ny
(x, y)

]
, (44)

where ψµν(x, y) ≡ 〈x|µ〉x〈y|ν〉y = ψ(x)
µ (x)ψ

(y)
ν (y). Note that the orthonormality of the

eigenstates
∣∣	(±)

nxny

〉
implies the following relations among the C-coefficients:[

C
(±)
nx ,ny+1

]2
+

[
C

(±)
nx+1,ny

]2 = 1 and C
(±)
nx ,ny+1C

(∓)
nx ,ny+1 − C

(±)
nx+1,ny

C
(∓)
nx+1,ny

= 0. (45)
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To determine the eigenvalues of Ĥ ξ , we need to resolve the equation Ĥ ξ

∣∣	(±)
nxny

〉 =
E (±)

ξnxny

∣∣	(±)
nxny

〉
. Using equations (38), (40) and (43) in this eigenvalue equation for the ξ = U

interaction case, we obtain the system of equations


h̄�T̂ xC
(±)
nx ,ny+1|nx〉x |ny + 1〉y ± h̄gT̂ xB̂

(x)
− B̂

(y)
+ C

(±)
nx+1,ny

|nx + 1〉x |ny〉y
= E (±)

Unxny
T̂ xC

(±)
nx ,ny+1|nx〉x |ny + 1〉y

h̄gT̂ yB̂
(y)
− B̂

(x)
+ C

(±)
nx ,ny+1|nx〉x |ny + 1〉y ∓ h̄�T̂ yC

(±)
nx+1,ny

|nx + 1〉x |ny〉y
= ±E (±)

Unxny
T̂ yC

(±)
nx+1,ny

|nx + 1〉x |ny〉y

(46)

and by using relations (10) and (11), we find the eigenvalue E (±)
unxny

in the same form as in (29)
and the additional coefficient relation

T̂ xC
(±)
nx ,ny+1T̂

†
x = {√

1 + υ2
nxny

∓ υnxny

}
T̂ yC

(±)
nx+1,ny

T̂ †
y, (47)

where the υnxny
factor is still given by equation (30).

Following the same steps for the ξ = N interaction case with equations (38), (40) and
(43) in the eigenvalue equation, we obtain the system of equations


h̄�T̂ xC
(±)
nx ,ny+1|nx〉x |ny + 1〉y ± h̄gT̂ xB̂

(x)
−

√
N̂xN̂yB̂

(y)
+ C

(±)
nx+1,ny

|nx + 1〉x |ny〉y
= E (±)

Nnxny
T̂ xC

(±)
nx ,ny+1|nx〉x |ny + 1〉y

h̄gT̂ yB̂
(y)
−

√
N̂yN̂xB̂

(x)
+ C

(±)
nx ,ny+1|nx〉x |ny + 1〉y ∓ h̄�T̂ yC

(±)
nx+1,ny

|nx + 1〉x |ny〉y
= ±E (±)

Nnxny
T̂ yC

(±)
nx+1,ny

|nx + 1〉x |ny〉y

(48)

the solution of which gives the eigenvalue E (±)
Nnxny

in the same form as in (32) and an additional
relation among the C-coefficients with the same form (47) but with the factor υnxny

now given

by υnxny
= �

/(
ge

(x)
nx+1e

(y)

ny+1

)
.

To conclude this part, we note that the excited states
∣∣	(±)

nxny

〉
of the coupled system can be

obtained from the two-dimensional spinor state∣∣	(±)
00

〉 =
[
T̂ xC

(±)
01 |0〉x |1〉y

± T̂ yC
(±)
10 |1〉x |0〉y

]
(49)

by using the expression
∣∣	(±)

nxny

〉 = K̂(±)
nxny

∣∣	(±)
00

〉
, where the raising operator matrix K̂(±)

nxny
is

given by expression (35) with the parameter translation matrix T̂± and the coefficient matrix
Ĉ(±)

nxny
now defined as

T̂± = T̂ xσ̂+σ̂− ± T̂ yσ̂−σ̂+ and Ĉ(±)
nxny

= C
(±)
nx ,ny+1σ̂+σ̂− + C

(±)
nx+1,ny

σ̂−σ̂+. (50)

The results obtained with the two models (direct and conjugate) thus lead to the conclusion
that, despite their differences, both models share the same spectra of eigenvalues E(±)

nxny
but

have different sets of eigenstates
∣∣	(±)

nxny

〉
.

5. Examples

To illustrate how our general results can be applied in specific cases, we work out in this section
three examples of shape-invariant potential pairs: (i) a pair of harmonic oscillator potentials,
(ii) a harmonic oscillator and a Morse potentials and (iii) a harmonic oscillator and a self-
similar potential. Our intention with the first example is to rederive quantum optics models.
Our motivation with the other two examples is to investigate the effects of an asymmetric
coupling potential and to evaluate the influence of a coupling potential, where parameters an

are related by a scaling in the coupled system eigenvalues and eigenfunctions.
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(a)

(b)

Figure 3. Three-dimensional graphics of the eigenvalues E
(+)
Nnxny

and E
(−)
Nnxny

in terms of the
quantum numbers nx and ny , respectively. The set of parameters used is presented in the text.

5.1. Two harmonic oscillator coupling potentials

We start with this example because it is the simplest among the shape-invariant coupling
potentials and describes interaction of matter, represented by a two-level atom, with a quantized
two-mode electromagnetic field, represented by the harmonic oscillator bosonic operators Âx

and Ây . The partner potentials (3) for these systems are obtained with the superpotentials
Wx

(
x, a

(x)
1

) = √
h̄�

(
a

(x)
1 x + ζx

)
and Wy

(
y, a

(y)

1

) = √
h̄�

(
a

(y)

1 y + ζy

)
, where a

(x,y)

1 and ζx,y

are real constants, while the remainders [1] in the shape-invariant condition (4) are given by
Rα

(
a(α)

n

) = η
(
a(α)

n + a
(α)
n+1

)
, where η = √

h̄/(2m�). Taking into account that the parameters

for this potential are related by a
(α)
1 = a

(α)
2 = · · · = a(α)

n , the remainders can be written as
Rα

(
a(α)

n

) = γα, with γα = 2ηa
(α)
1 , and thus

e(α)
n = nγα with α = x or y. (51)

Under these conditions the coupled system energy eigenvalues E
(±)
ξnxny

in units of h̄�, obtained
when we use equation (51) in (33), are given by the expression

E
(±)
ξnxny

/
h̄�= {γx(nx + 1) + γy(ny + 1)} ± ε

{√
γxγy(nx + 1)(ny + 1) + δ2, if ξ = U,√{γxγy(nx + 1)(ny + 1)}2 + δ2, if ξ = N.

(52)

Figure 3 shows two-dimensional representation of the coupled system energy eigenvalues
E

(±)
Nnxny

in units of h̄� obtained when we use equation (52) and assume the values γx = γy =
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(a) (b) (c)

Figure 4. Smooth level curve of the eigenvalues of the coupled system with two harmonic oscillator
potentials projected in a nx ×ny plane. Figures (a) and (b) show, respectively, E(−)

Nnxny
and E

(+)
Nnxny

while figure (c) shows E
(+)
Unxny

calculated with the same strengths.

1.0, ε = 0.2 and δ = 1.0. Before we discuss the behaviour of the eigenvalues of the coupled
system, it is interesting to observe that the general form of the coupling term E (±)

ξnxny
represents

a particular case, with a δ2 shift, of the Cobb–Douglas production function in economics that
relates productivity to labour and capital [21]. Figures 3(a) and (b) express the behaviour
characteristic of that function. For E

(+)
Nnxny

it is evident that the coupling increases the value

of E
(±)
Nnxny

along the principal diagonal defined from (0,0) to (8,8). However the behaviour

of E
(−)
Nnxny

is certainly more interesting since, in this case, the competition between the terms

E(0)
nxny

and E (−)
Nnxny

in E
(−)
Nnxny

create a saddle point in (4,4). Therefore, if we imagine standing

at this saddle point, E
(−)
Nnxny

presents a minimum value when we follow the diagonal defined

from (8,0) to (0,8) and slopes up away from this point. Along the principal diagonal E
(−)
Nnxny

presents a maximum value in the saddle point and slopes down away from this point. On
the other hand, using (52) we can show that along the straight lines (4, ny) and (nx, 4), the
eigenvalues have the almost constant value

E
(−)
N,nx ,4

= E
(−)
N,4,ny

≈
{

5 − 1

10[nx,y + 1]

}
h̄� ≈ 5h̄�. (53)

Obviously this value, the position of those lines as well as the saddle point position are
dependent on the parameter set used.

We show in figure 4 the smooth level curves of E
(±)
ξnxny

in units of h̄�, obtained with
equation (52) and parameter values presented above, projected in a nx × ny plane assuming
continuous real values for these quantum numbers. To help the visualization, we present each
energy level with a different shading (darker regions are related to lower energy values). To
contrast different possibilities, we present together such curves for E

(−)
Nnxny

in (a), E
(+)
Nnxny

in

(b) and E
(+)
Unxny

in (c). Because of the isotropy of the shape-invariant potentials, we observe
that the three figures present a symmetric behaviour along the principal diagonal. We can
compare the behaviour of the eigenvalues obtained with the two different kinds of interaction.
The enhancement effect on the coupling term E (+)

Nnxny
compared with the usual interaction term
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E (+)
Unxny

is evident if we compare figures 4(b) and (c). We also observe in figure 4(a) the saddle
point in (4,4) as well as the almost isoenergetic lines (4, ny) and (nx, 4).

The spinor elements of the eigenfunctions 	(±)
nxny

(x, y) in (26) and (44), for the direct and

the conjugate models, respectively, are given by ψµν(x, y) = ψµ

[
a

(x)
1 x + ζx

]
ψν

[
a

(y)

1 y + ζy

]
,

where ψn(u) = e−u2/2 Hn(u) and Hn(u) are the Hermite polynomials [24].

5.2. Harmonic oscillator plus Morse coupling potentials

The one-dimensional Morse potential, originally introduced as a useful model for the
diatomic molecules [22], has been widely used in many areas of physics to study physics
phenomena such as molecular vibrations, laser chemistry and, in particular, chemical bonds.
Anharmonicities and dissociation effects, which may arise in a more realistic physical situation,
are better represented using a Morse potential. Therefore the partner potentials (3) for this
second example are obtained with the superpotentials Wx

(
x, a

(x)
1

) = √
h̄�

(
a

(x)
1 x + ζ

)
for the

harmonic oscillator and Wy

(
y, a

(y)

1

) = √
h̄�

{
a

(y)

1 − e−�y
}

for the Morse potential [1], where

a
(x,y)

1 , ζ and � are real constants.
The remainders [1] in the shape-invariant condition (4) for the Morse potential case are

given by R
(
a

(y)
n

) = ηy

(
2a

(y)
n −ηy

)
, with the potential parameters related by a

(y)

n+1 = a
(y)
n −ηy,

where ηy = √
h̄/(2m�)�. Using these results in (9), we can prove that the energy eigenstates

are given by

e(y)
n = η2

yn(2ζy − n), with n � ζy ≡ a
(y)

1

/
ηy. (54)

Under these conditions the coupled system energy eigenvalues E
(±)
ξnxny

in units of h̄�, obtained
when we use (51) for α = x and (54) for α = y in equation (33), are given by the expression

E
(±)
ξnxny

/
h̄� = {

γx(nx + 1) + η2
y(ny + 1)(2ζy − ny − 1)

}

± ε




√
γxη2

y(nx + 1)(ny + 1)(2ζy − ny − 1) + δ2, if ξ = U,√{
γxη2

y(nx + 1)(ny + 1)(2ζy − ny − 1)
}2

+ δ2, if ξ = N.

(55)

Figure 5 is similar to figure 4, but with a Morse potential and harmonic oscillator pair,
obtained when we use (55) and assume the parameter values γx = 1.0, ε = 0.2, δ = 1.0,
a

(y)

1 = 10ηy and ηy = 1. Looking at this figure, it is evident that the anisotropy of the coupling
potential system is manifested by the absence of symmetry lines for the level eigenvalue curves.
Comparing figures 5(b) and (c), one can conclude that the coupling term E (+)

ξnxny
is dominant

for the intensity-dependent interaction case. We observe in figure 5(a) that the predominance
of the coupling term E (−)

Nnxny
over the term E(0)

nxny
in E

(−)
Nnxny

for high values of nx and ny makes
the eigenvalues assume negative values in this region. Obviously all these characteristic facts
of E

(±)
ξnxny

can be justified by looking at expression (55).

The spinor elements of the coupled system eigenfunctions 	(±)
nxny

(x, y) in (26) and (44),

for the direct and conjugate models, respectively, are given by ψµν(x, y) = ψ(x)
µ

[
a

(x)
1 x +

ζx

]
ψ

(y)
ν [2ζye

−�y] where ψ(x)
n (u) = e−u2/2 Hn(u) while ψ

(y)
n (u) = e−u/2uλ/2 Lλ

n(u) with
λ = 2ζy − 2n − 1 and being Lλ

n(u) the associated Laguerre polynomials [24].

5.3. Harmonic oscillator + self-similar coupling potentials

One class of shape-invariant potentials is given by an infinite chain of reflectionless potentials
V

(k)
± (y), (k = 0, 1, 2, . . .), the associated superpotentials Wk(y) for which satisfy the self-
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(a) (b) (c)

Figure 5. Same as figure 4 calculated for a pair with a harmonic oscillator plus a Morse potential.
The set of parameters used is presented in the text.

(a) (b) (c)

Figure 6. Same as figure 4 calculated for a pair with a harmonic oscillator plus a self-similar
potential. The set of parameters used is presented in the text.

similar ansatz Wk(y) = qkW(qky), with 0 < q < 1. These sets of partner potentials V
(k)
± (y),

also called self-similar potentials [23], have an infinite number of bound states and their
parameters related by a scaling: a

(y)
ny

= qny−1a
(y)

1 , ∀ny ∈ Z. The self-similar potentials
can be considered as quantum deformations of the multisoliton solutions corresponding to the
Rosen–Morse potential. Indeed working with this kind of potential it is possible to get the
Rosen–Morse, harmonic oscillator and Pöschl–Teller potentials as limiting cases [23]. Shape
invariance of self-similar potentials was studied in detail in [15]. In the simplest case studied,
the remainder of equation (4) is given by Ry

(
a

(y)

1

) = ca
(y)

1 , where c is a constant. Using this
result in (9), we can prove that

e(y)
ny

=
(

1 − qny

1 − q

)
Ry

(
a

(y)

1

)
. (56)
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Figure 7. Smooth level curve of the eigenvalues of the coupled system E
(−)
Nnxny

involving
a harmonic oscillator and a self-similar potential calculated for the scaling parameter values
q = 0.20, 0.80, 0.85 and 0.99. The values of the other constants are the same as used before.

Under these conditions the coupled system energy eigenvalues E
(±)
ξnxny

in units of h̄�,
obtained when we use (51) for α = x and (56) for α = y in equation (33), are given by the
expression

E
(±)
ξnxny

/
h̄� = {γx(nx + 1) + κy(1 − qny+1)}

± ε

{√
γxκy(nx + 1)(1 − qny+1) + δ2, if ξ = U,√{γxκy(nx + 1)(1 − qny+1)}2 + δ2, if ξ = N,

(57)

where κy = Ry

(
a

(y)

1

)/
(1 − q).
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Figure 6 is the version of figure 4 for the smooth level curves projected in a nx ×ny plane
of the coupled system eigenvalues E

(±)
ξnxny

in h̄� units, obtained when we use (57) and the set of

constant values γx = 1.0, ε = 0.2, δ = 1.0, R
(
a

(y)

1

) = 1.0 and q = 0.5. This figure shows that
the anisotropy of the coupling potential system is characterized by the absence of symmetry
lines for the eigenvalue curves. Besides that the position of the level curves almost parallel to
the ny-axis for high values of ny observed in all figures expresses the weak influence of the
coupling potential V (±)

y (y) on the eigenvalue E
(±)
ξnxny

which result, at the end, in a saturation
effect. Only for small values of the quantum numbers nx and ny , the two potentials have a
comparable impact on the E

(±)
ξnxny

values. As in the other two examples, comparing figures 6(b)

and (c), it is possible to verify the enhancement effect on the coupling term E (+)
Nnxny

for the

intensity-dependent interaction when compared with the usual interaction case E (+)
Unxny

.
To visualize the influence of the scaling parameter q of the self-similar potential

on the eigenvalues of the coupled system, we plot in figure 7 the smooth level curves
of E

(−)
Nnxny

in h̄� units, obtained with equation (57), projected on a nx × ny plane for
q = 0.20, 0.80, 0.85 and 0.99. We assume the same values for the other parameters. We
observe that as the scaling parameter q increases the saddle point moves closer to the (4,4)
position, bringing together the almost isoenergetic straight lines of E

(−)
Nnx,ny

≈ 5h̄�. It is
evident from this figure that in the limit q → 1, we reproduce the results obtained in the first
example involving two harmonic oscillator coupling potentials. This is easy to understand
since we note that

lim
q→1

e(y)
ny

= lim
q→1

(
1 − qny

1 − q

)
Ry

(
a

(y)

1

)
= nyRy

(
a

(y)

1

)
(58)

that corresponds to equation (51) if we identify γy → Ry

(
a

(y)

1

)
.

6. Conclusions

Exactly soluble and fully quantum-mechanical models are rare. In this paper we introduced
a class of bound-state problems which represent a two-level atom coupled with a two-
dimensional supersymmetric and shape-invariant potential system. This is a non-trivial
coupled-channels’ problem which may find applications in molecular, atomic and nuclear
physics. Taking into account two possible coupled models (direct- and conjugate-coupled
models) and two forms of coupling interaction (constant and intensity dependent), we obtained
the eigenvalues and the eigenstates of the system and discussed the differences and similarities
presented by each model and the two different kinds of couplings. We studied the behaviour
of these eigenvalues problem quantities for three different pairs of shape-invariant potentials
(two harmonic oscillators, harmonic oscillator + Morse and harmonic oscillator + self-similar
potentials). For pairs of shape-invariant potentials involving other than the harmonic oscillator,
the eigenvalues present asymmetric behaviour in relation to the quantum numbers nx and ny ,
basically determined by the coupling eigenvalue term E (−)

ξnxny
the form of which is a particular

case of the production function of Cobb–Douglas in economics.
In the next paper of this series [25], we investigate the dynamics of the models we

introduced.
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